We consider the problem of assigning agents to resources under the two-sided preference list model with upper and lower-quota requirements on resources. This setting models real-world applications like assigning students to colleges or courses, resident doctors to hospitals and so on. In presence of lower-quotas, an instance may not admit a stable matching that satisfies the lower-quotas. Krishnaa et al. [SAGT 2020] explore two alternative optimality notions for the instances with lower-quotas -- envy-freeness and relaxed stability. They investigate the problem of computing a maximum size envy-free matching (MAXEFM) and a maximum size relaxed stable matching (MAXRSM) that satisfies the lower-quotas. They show that both these optimization problems are NP-hard and not approximable within a constant factor unless P=NP. In this work, we investigate parameterized complexity of MAXEFM and MAXRSM. We consider several natural parameters derived from the instance -- the number of resources with non-zero lower-quota, deficiency of the instance, maximum length of the preference list of a resource with non-zero lower-quota, among others. We show that MAXEFM problem is W[1]-hard for several interesting parameters and MAXRSM problem is para-NP-hard for two natural parameters. We present a kernelization result on a combination of parameters and FPT algorithms for both problems.


翻译:我们考虑了在双面优惠名单模式下分配代理商,对资源规定上限和下配额要求的问题。这种模式设置了将学生分配到学院或课程、住院医生到医院等的模型真实应用。当出现低配额时,一个实例可能无法接受满足较低配额的稳定匹配。克里希纳等人[SAGT 探讨低配额情况的两个替代最佳概念 -- -- 嫉妒自由性和放松稳定性。他们调查了计算最大规模无嫉妒性参数匹配(MAXEFM)和最大规模放松稳定匹配(MAXRSM)以满足较低配额要求的问题。它们表明,这些优化问题在固定因素中是硬的,不可令人接受,除非P=NP。在这项工作中,我们调查了MAXEMM和MAXSM的参数的复杂性参数。我们考虑了从实例中得出的若干自然参数 -- -- 非零低配额资源的数量,实例的缺陷,非零低配额资源最优惠清单的最大长度稳定匹配(MAXM-RM),而W-R-R-R-RFR的参数中,我们为目前两个令人感兴趣的结果问题。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
35+阅读 · 2020年5月4日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年10月17日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
Top
微信扫码咨询专知VIP会员