Research on debiased recommendation has shown promising results. However, some issues still need to be handled for its application in industrial recommendation. For example, most of the existing methods require some specific data, architectures and training methods. In this paper, we first argue through an online study that arbitrarily removing all the biases in industrial recommendation may not consistently yield a desired performance improvement. For the situation that a randomized dataset is not available, we propose a novel self-sampling training and evaluation (SSTE) framework to achieve the accuracy-bias tradeoff in recommendation, i.e., eliminate the harmful biases and preserve the beneficial ones. Specifically, SSTE uses a self-sampling module to generate some subsets with different degrees of bias from the original training and validation data. A self-training module infers the beneficial biases and learns better tradeoff based on these subsets, and a self-evaluation module aims to use these subsets to construct more plausible references to reflect the optimized model. Finally, we conduct extensive offline experiments on two datasets to verify the effectiveness of our SSTE. Moreover, we deploy our SSTE in homepage recommendation of a famous financial management product called Tencent Licaitong, and find very promising results in an online A/B test.
翻译:然而,有些问题需要处理才能应用于工业建议中。例如,大多数现有方法需要某些具体的数据、架构和培训方法。在本文中,我们首先通过在线研究来论证,武断地消除工业建议中的所有偏见可能不会始终产生预期的绩效改善。对于没有随机化数据集的情况,我们提议建立一个新的自我抽样培训和评价框架,以在建议中实现准确性偏差取舍,即消除有害偏差并保护有益。具体地说,SSTE使用自我抽样模块生成一些与最初培训和验证数据有不同程度偏差的子集。自我培训模块推断出有益的偏差,并学习更好的基于这些子集的权衡,自我评价模块旨在利用这些子集构建更可信的参考,以反映优化模型。最后,我们在两个数据集上进行了广泛的离线实验,以核实我们的SSTE的有效性。此外,我们将STE应用一个自我抽样模块生成了一些与最初培训和验证数据有不同程度偏差的子集。一个自我培训模块推导出有益的偏差,并学习了基于这些子集的更好的权衡结果,一个自我评价模块旨在建立更可信的参考模型。最后,我们在主页上找到一个有前途的在线测试结果。