The performance of distributed and data-centric applications often critically depends on the interconnecting network. Emerging reconfigurable datacenter networks (RDCNs) are a particularly innovative approach to improve datacenter throughput. Relying on a dynamic optical topology which can be adjusted towards the workload in a demand-aware manner, RDCNs allow to exploit temporal and spatial locality in the communication pattern, and to provide topological shortcuts for frequently communicating racks. The key challenge, however, concerns how to realize demand-awareness in RDCNs in a scalable fashion. This paper presents and evaluates Chopin, a hybrid scheduler for self-adjusting networks that provides demand-awareness at low overhead, by combining centralized and distributed approaches. Chopin allocates optical circuits to elephant flows, through its slower centralized scheduler, utilizing global information. Chopin's distributed scheduler is orders of magnitude faster and can swiftly react to changes in the traffic and adjust the optical circuits accordingly, by using only local information and running at each rack separately.
翻译:分布式和以数据为中心的应用的性能往往关键地取决于相互连接的网络。新出现的可重新构建的数据中心网络(RDCN)是改进数据中心吞吐量的一种特别创新的方法。依靠一种动态的光学地形学,可以按需求调整以适应工作量,RDCN能够利用通信模式中的时间和空间位置,为经常沟通架提供地形捷径。然而,关键的挑战是如何以可缩放的方式在RDCN中实现需求意识。本文介绍并评估了肖邦,这是通过集中和分布式方法结合在低管理部下提供需求意识的自我调整网络的混合调度器。肖邦通过较慢的中央调度器,利用全球信息,将光电路分配给大象流动。Speppin的分布式调度器是数量级更快的,可以对交通变化作出迅速反应,并相应调整光电路,仅使用当地信息,并分别运行于每架。