This paper focuses on estimating probability distributions over the set of 3D rotations ($SO(3)$) using deep neural networks. Learning to regress models to the set of rotations is inherently difficult due to differences in topology between $\mathbb{R}^N$ and $SO(3)$. We overcome this issue by using a neural network to output the parameters for a matrix Fisher distribution since these parameters are homeomorphic to $\mathbb{R}^9$. By using a negative log likelihood loss for this distribution we get a loss which is convex with respect to the network outputs. By optimizing this loss we improve state-of-the-art on several challenging applicable datasets, namely Pascal3D+, ModelNet10-$SO(3)$ and UPNA head pose.
翻译:本文的重点是利用深神经网络估计3D轮值(SO(3)美元)的概率分布。 学习回溯模型到轮值组合本身很困难, 因为$\mathbb{R ⁇ N$和$SO(3)$之间存在的地形差异。 我们通过使用神经网络输出Fisher矩阵分布参数, 因为这些参数是原形值到$\mathbb{R ⁇ 9$。 如果使用负日志可能性损失来计算这种分布, 我们就会在网络输出方面损失一个正方块。 通过优化这一损失, 我们改进了几个具有挑战性的适用数据集, 即 Pscal3D+、 模型Net10-$SO(3) 和 UPNA 头部的先进技术 。