Let $P$ be a set of points in some metric space. The approximate furthest neighbor problem is, given a second point set $C,$ to find a point $p \in P$ that is a $(1+\epsilon)$ approximate furthest neighbor from $C.$ The dynamic version is to maintain $P,$ over insertions and deletions of points, in a way that permits efficiently solving the approximate furthest neighbor problem for the current $P.$ We provide the first algorithm for solving this problem in metric spaces with finite doubling dimension. Our algorithm is built on top of the navigating net data-structure. An immediate application is two new algorithms for solving the dynamic $k$-center problem. The first dynamically maintains $(2+\epsilon)$ approximate $k$-centers in general metric spaces with bounded doubling dimension and the second maintains $(1+\epsilon)$ approximate Euclidean $k$-centers. Both these dynamic algorithms work by starting with a known corresponding static algorithm for solving approximate $k$-center, and replacing the static exact furthest neighbor subroutine used by that algorithm with our new dynamic approximate furthest neighbor one. Unlike previous algorithms for dynamic $k$-center with those same approximation ratios, our new ones do not require knowing $k$ or $\epsilon$ in advance. In the Euclidean case, our algorithm also seems to be the first deterministic solution.
翻译:最远的近邻问题是,如果给第二个点设定了美元C, 找到一个点$p 以P$为单位, 找到一个点$p $ p 以美元为单位, 大约是美元。 动态版本是将美元( 1 ⁇ epsilon) 大约维持为美元, 多插入和删除点数, 以便有效地解决当前美元( $) 最远的邻里问题。 我们提供第一个算法, 来解决当前美元( $) 的公用空间中的问题。 我们的算法建在导航网数据结构的顶端。 即时应用是两个新的算法, 解决动态美元( $ $ 美元) 问题。 第一个动态版本是将美元( 2 ⁇ epsilon) 大约维持在受约束的通用空间中的美元( $- $ ), 第二个版本是 $ ( 1 ⁇ ) 。 这些动态算法首先使用已知的固定的固定的固定算法, 解决大约是 $ 美元 。