Reversible computations constitute an unconventional form of computing where any sequence of performed operations can be undone by executing in reverse order at any point during a computation. It has been attracting increasing attention as it provides opportunities for low-power computation, being at the same time essential or eligible in various applications. In recent work, we have proposed a structural way of translating Reversing Petri Nets (RPNs) - a type of Petri nets that embeds reversible computation, to bounded Coloured Petri Nets (CPNs) - an extension of traditional Petri Nets, where tokens carry data values. Three reversing semantics are possible in RPNs: backtracking (reversing of the lately executed action), causal reversing (action can be reversed only when all its effects have been undone) and out of causal reversing (any previously performed action can be reversed). In this paper, we extend the RPN to CPN translation with formal proofs of correctness. Moreover, the possibility of introduction of cycles to RPNs is discussed. We analyze which type of cycles could be allowed in RPNs to ensure consistency with the current semantics. It emerged that the most interesting case related to cycles in RPNs occurs in causal semantics, where various interpretations of dependency result in different net's behaviour during reversing. Three definitions of dependence are presented and discussed.


翻译:反向计算是一种非常规的计算形式,在计算过程中,任何操作序列都可以通过在任何时间执行反向顺序来取消。它吸引了越来越多的注意力,因为它为低功率计算提供了机会,同时具有必不可少的条件或各种应用中的合格条件。在最近的工作中,我们提出了一种结构化方法,将Reversing Petri Nets(RPNs)翻译为Reversing Petri Nets(RPNs)----一种含有可逆计算,并包含有条纹的彩色Petri Nets(CPNs)的Petri 网络(CPNs)----一种传统的Petri Nets(Petri Nets) 的延伸,其代号包含数据值。在 RPNs 中,三种反向的语义是可能的:反向跟踪(扭转最近执行的行动)、因果逆转(只有当其所有影响都被抵消后才能扭转)和因果逆转(任何先前的行动都可以逆转)),在本文中,我们把RPNPN的翻译扩展为CPs的翻译,并附有正确性的正式证据。此外,我们分析了向RPNPNs的周期的可能性。我们分析了RPPPERs的周期可以允许与当前三个的回溯性解释中出现有趣的解释。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员