Though deep neural networks have achieved the state of the art performance in visual classification, recent studies have shown that they are all vulnerable to the attack of adversarial examples. In this paper, we develop improved techniques for defending against adversarial examples. First, we propose an enhanced defense technique denoted Attention and Adversarial Logit Pairing(AT+ALP), which encourages both attention map and logit for the pairs of examples to be similar. When being applied to clean examples and their adversarial counterparts, AT+ALP improves accuracy on adversarial examples over adversarial training. We show that AT+ALP can effectively increase the average activations of adversarial examples in the key area and demonstrate that it focuses on discriminate features to improve the robustness of the model. Finally, we conduct extensive experiments using a wide range of datasets and the experiment results show that our AT+ALP achieves the state of the art defense performance. For example, on 17 Flower Category Database, under strong 200-iteration PGD gray-box and black-box attacks where prior art has 34% and 39% accuracy, our method achieves 50% and 51%. Compared with previous work, our work is evaluated under highly challenging PGD attack: the maximum perturbation $\epsilon \in \{0.25,0.5\}$ i.e. $L_\infty \in \{0.25,0.5\}$ with 10 to 200 attack iterations. To the best of our knowledge, such a strong attack has not been previously explored on a wide range of datasets.


翻译:尽管深层神经网络在视觉分类方面达到了艺术性能的状态,但最近的研究表明,它们都很容易受到对抗性实例的攻击。在本文中,我们开发了更好的防御对抗性实例的技术。首先,我们提出一个强化的防御技术,意指注意和Aversarial Logit Pairing(AT+ALP),这鼓励对相近范例进行关注地图和登录。当应用到清洁实例和对立对等实例时,AT+ALP提高了对抗性实例相对于对抗性训练的准确性。我们表明,AT+ALP可以有效地提高关键领域对抗性实例的平均激活率,并表明它侧重于区别性特征,以提高模型的稳健性。最后,我们利用广泛的数据集和实验结果表明,我们的AT+ALPP达到艺术性表现的状态。例如,在17个花样类数据库中,在强大的200美元攻击性攻击性框和黑箱攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性的准确性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
4+阅读 · 2019年11月21日
Adversarial Metric Attack for Person Re-identification
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关VIP内容
相关论文
Top
微信扫码咨询专知VIP会员