Roof-mounted spinning LiDAR sensors are widely used by autonomous vehicles. However, most semantic datasets and algorithms used for LiDAR sequence segmentation operate on $360^\circ$ frames, causing an acquisition latency incompatible with real-time applications. To address this issue, we first introduce HelixNet, a $10$ billion point dataset with fine-grained labels, timestamps, and sensor rotation information necessary to accurately assess the real-time readiness of segmentation algorithms. Second, we propose Helix4D, a compact and efficient spatio-temporal transformer architecture specifically designed for rotating LiDAR sequences. Helix4D operates on acquisition slices corresponding to a fraction of a full sensor rotation, significantly reducing the total latency. Helix4D reaches accuracy on par with the best segmentation algorithms on HelixNet and SemanticKITTI with a reduction of over $5\times$ in terms of latency and $50\times$ in model size. The code and data are available at: https://romainloiseau.fr/helixnet
翻译:自动飞行器广泛使用自动飞行器的旋转旋转液态雷达传感器,然而,大多数用于液态雷达序列分离的语义数据集和算法均在360 ⁇ circ$框架上运行,造成与实时应用不兼容的获取纬度。为了解决这个问题,我们首先引入了HelixNet,一个价值1 000亿美元的点数据集,配有精细刻标签、时标和传感器旋转信息,以准确评估分离算法的实时准备状态。第二,我们提议Helix4D,一个专门为旋转液态雷达序列而设计的紧凑而高效的时空变压器结构。Helix4D在获取切片上运行,相当于完全传感器旋转的一小部分,大大降低了总纬度。Helix4D在与HelixNet和SmantiKITTI的最佳分解算法的等值上达到精确度,在拉特尼特尼特和50美元模型规模上减少了5美元以上的时间值。该代码和数据见:https://romainnetseau/helmixau。