We propose and analyze several stochastic gradient algorithms for finding stationary points or local minimum in nonconvex, possibly with nonsmooth regularizer, finite-sum and online optimization problems. First, we propose a simple proximal stochastic gradient algorithm based on variance reduction called ProxSVRG+. We provide a clean and tight analysis of ProxSVRG+, which shows that it outperforms the deterministic proximal gradient descent (ProxGD) for a wide range of minibatch sizes, hence solves an open problem proposed in Reddi et al. (2016b). Also, ProxSVRG+ uses much less proximal oracle calls than ProxSVRG (Reddi et al., 2016b) and extends to the online setting by avoiding full gradient computations. Then, we further propose an optimal algorithm, called SSRGD, based on SARAH (Nguyen et al., 2017) and show that SSRGD further improves the gradient complexity of ProxSVRG+ and achieves the optimal upper bound, matching the known lower bound of (Fang et al., 2018; Li et al., 2021). Moreover, we show that both ProxSVRG+ and SSRGD enjoy automatic adaptation with local structure of the objective function such as the Polyak-\L{}ojasiewicz (PL) condition for nonconvex functions in the finite-sum case, i.e., we prove that both of them can automatically switch to faster global linear convergence without any restart performed in prior work ProxSVRG (Reddi et al., 2016b). Finally, we focus on the more challenging problem of finding an $(\epsilon, \delta)$-local minimum instead of just finding an $\epsilon$-approximate (first-order) stationary point (which may be some bad unstable saddle points). We show that SSRGD can find an $(\epsilon, \delta)$-local minimum by simply adding some random perturbations. Our algorithm is almost as simple as its counterpart for finding stationary points, and achieves similar optimal rates.


翻译:我们提出并分析数种随机梯度算法, 以寻找固定点或本地最小值的非convex 。 首先, 我们提出一个基于差异减少的简单准随机梯度算法, 名为 ProxSVRG+ 。 我们对 ProxSVRG+ 进行清洁和严格的分析, 这表明它比确定性精度梯度下降( ProxGD) 更快( ProxGD), 从而解决 Reddi 等人( 2016b. 2016b. ) 提出的一个开放式问题。 另外, ProxSVRG+ 使用比 ProxVRGG( Reddi等人, 2016b) 少得多的准直径梯度梯度计算。 然后, 我们进一步提议一个最佳的算法, 仅仅以SAH( Nguyen et al., 201717) 为基础, 显示SSRGG 的任何梯度复杂性复杂性复杂性 和 最优的上限, 通过我们所知道的直径SL21 的直径直方值 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员