Inferring the parameters of models describing biological systems is an important problem in the reverse engineering of the mechanisms underlying these systems. Much work has focussed on parameter inference of stochastic and ordinary differential equation models using Approximate Bayesian Computation (ABC). While there is some recent work on inference in spatial models, this remains an open problem. Simultaneously, advances in topological data analysis (TDA), a field of computational mathematics, has enabled spatial patterns in data to be characterised. Here, we focus on recent work using topological data analysis to study different regimes of parameter space of a well-studied model of angiogenesis. We propose a method for combining TDA with ABC for inferring parameters in the Anderson-Chaplain model of angiogenesis. We demonstrate that this topological approach outperforms simpler statistics based on spatial features of the data. This is a first step towards a larger framework of spatial parameter inference for biological systems, for which there may be a variety of filtrations, vectorisations, and summary statistics to be considered.


翻译:对描述生物系统的模型参数进行推论是这些系统机制的反向工程中的一个重要问题。许多工作都侧重于使用Apbear Bayesian Computation(ABC)对随机和普通差分方程模型的参数推论。虽然最近对空间模型的推论进行了一些工作,但这仍然是一个尚未解决的问题。与此同时,地形数据分析(TDA)这一计算数学领域的进步使数据的空间模式得以定性。在这里,我们侧重于最近的工作,利用地形数据分析来研究研究研究研究经过良好研究的血管起源模型的参数空间的不同系统。我们提出了将TDA与ABC相结合的方法,用以推断安德森-查普兰血管起源模型中的参数。我们证明,这种表面学方法比基于数据空间特征的更简单的统计数据要好。这是朝着生物系统空间参数推论的更大框架迈出的第一步,其中可能考虑各种过滤、传导和简要统计。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年10月16日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
1+阅读 · 2021年6月10日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Top
微信扫码咨询专知VIP会员