Detecting abnormal events in video is commonly framed as a one-class classification task, where training videos contain only normal events, while test videos encompass both normal and abnormal events. In this scenario, anomaly detection is an open-set problem. However, some studies assimilate anomaly detection to action recognition. This is a closed-set scenario that fails to test the capability of systems at detecting new anomaly types. To this end, we propose UBnormal, a new supervised open-set benchmark composed of multiple virtual scenes for video anomaly detection. Unlike existing data sets, we introduce abnormal events annotated at the pixel level at training time, for the first time enabling the use of fully-supervised learning methods for abnormal event detection. To preserve the typical open-set formulation, we make sure to include disjoint sets of anomaly types in our training and test collections of videos. To our knowledge, UBnormal is the first video anomaly detection benchmark to allow a fair head-to-head comparison between one-class open-set models and supervised closed-set models, as shown in our experiments. Moreover, we provide empirical evidence showing that UBnormal can enhance the performance of a state-of-the-art anomaly detection framework on two prominent data sets, Avenue and ShanghaiTech.
翻译:视频中检测异常事件通常被设计为单级分类任务, 培训视频只包含正常事件, 而测试视频包含正常和异常事件。 在这种情形下, 异常检测是一个开放的问题。 但是, 一些研究将异常检测同行动识别等同起来。 这是一个封闭的假设情景, 无法测试系统检测新异常类型的能力。 为此, 我们提出由多个视频异常检测虚拟场景组成的新的监管开放设定基准UBExcus。 与现有数据集不同, 我们在培训时的像素级别引入附加说明的异常事件, 首次允许使用完全监督的学习方法来检测异常事件。 为了保存典型的开放设置配方, 我们确保将异常类型不连锁的组合纳入培训和视频采集测试中。 据我们所知, UBRCent是第一个视频异常检测基准, 可以对一等开放模式和受监督的封闭模式进行公平的头对头对比。 此外, 我们在实验中提供了两个实验性证据, 显示UBSBsirity 能够加强州- Chang- dregard 和上层的异常数据框架的性。