Branching Time Active Inference (Champion et al., 2021b,a) is a framework proposing to look at planning as a form of Bayesian model expansion. Its root can be found in Active Inference (Friston et al., 2016; Da Costa et al., 2020; Champion et al., 2021c), a neuroscientific framework widely used for brain modelling, as well as in Monte Carlo Tree Search (Browne et al., 2012), a method broadly applied in the Reinforcement Learning literature. Up to now, the inference of the latent variables was carried out by taking advantage of the flexibility offered by Variational Message Passing (Winn and Bishop, 2005), an iterative process that can be understood as sending messages along the edges of a factor graph (Forney, 2001). In this paper, we harness the efficiency of an alternative method for inference called Bayesian Filtering (Fox et al., 2003), which does not require the iteration of the update equations until convergence of the Variational Free Energy. Instead, this scheme alternates between two phases: integration of evidence and prediction of future states. Both of those phases can be performed efficiently and this provides a seventy times speed up over the state-of-the-art.


翻译:2021ba)是一个框架,提议将规划视为一种巴伊西亚模式扩展的形式,其根部可以在主动推断中找到(Friston等人,2016年;Da Costa等人,2020年;Camper等人,2021c),这是一个神经科学框架,广泛用于大脑建模,以及蒙特卡洛树搜索(Browne等人,2012年),这是在强化学习文献中广泛应用的一种方法。到目前为止,潜在变量的推断是通过利用变异信息传递提供的灵活性(Winn和Bishop,2005年)来进行的,这是一个互动进程,可以理解为在要素图边缘发出信息(Forney,2001年)。 在本文中,我们利用一种称为Bayesian过滤(Fox等人,2003年)的替代方法的效率,这种方法不需要在Variation自由能源趋同之前对更新方程式进行重复。相反,这个方案在两个阶段之间进行交替:对证据的整合和对未来状态的预测,这些阶段的进度可以提供。

0
下载
关闭预览

相关内容

专知会员服务
49+阅读 · 2021年7月31日
专知会员服务
31+阅读 · 2021年6月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
From Motion to Muscle
Arxiv
0+阅读 · 2022年2月17日
Arxiv
0+阅读 · 2022年2月17日
Arxiv
0+阅读 · 2022年2月15日
Arxiv
4+阅读 · 2021年10月19日
VIP会员
相关VIP内容
专知会员服务
49+阅读 · 2021年7月31日
专知会员服务
31+阅读 · 2021年6月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员