Branching Time Active Inference (Champion et al., 2021b,a) is a framework proposing to look at planning as a form of Bayesian model expansion. Its root can be found in Active Inference (Friston et al., 2016; Da Costa et al., 2020; Champion et al., 2021c), a neuroscientific framework widely used for brain modelling, as well as in Monte Carlo Tree Search (Browne et al., 2012), a method broadly applied in the Reinforcement Learning literature. Up to now, the inference of the latent variables was carried out by taking advantage of the flexibility offered by Variational Message Passing (Winn and Bishop, 2005), an iterative process that can be understood as sending messages along the edges of a factor graph (Forney, 2001). In this paper, we harness the efficiency of an alternative method for inference called Bayesian Filtering (Fox et al., 2003), which does not require the iteration of the update equations until convergence of the Variational Free Energy. Instead, this scheme alternates between two phases: integration of evidence and prediction of future states. Both of those phases can be performed efficiently and this provides a seventy times speed up over the state-of-the-art.
翻译:2021ba)是一个框架,提议将规划视为一种巴伊西亚模式扩展的形式,其根部可以在主动推断中找到(Friston等人,2016年;Da Costa等人,2020年;Camper等人,2021c),这是一个神经科学框架,广泛用于大脑建模,以及蒙特卡洛树搜索(Browne等人,2012年),这是在强化学习文献中广泛应用的一种方法。到目前为止,潜在变量的推断是通过利用变异信息传递提供的灵活性(Winn和Bishop,2005年)来进行的,这是一个互动进程,可以理解为在要素图边缘发出信息(Forney,2001年)。 在本文中,我们利用一种称为Bayesian过滤(Fox等人,2003年)的替代方法的效率,这种方法不需要在Variation自由能源趋同之前对更新方程式进行重复。相反,这个方案在两个阶段之间进行交替:对证据的整合和对未来状态的预测,这些阶段的进度可以提供。