Several studies pointed out that users seek the information they like the most, filter out dissenting information, and join groups of like-minded users around shared narratives. Feed algorithms may burst such a configuration toward polarization, thus influencing how information (and misinformation) spreads online. However, despite the extensive evidence and data about polarized opinion spaces and echo chambers, the interplay between human and algorithmic factors in shaping these phenomena remains unclear. In this work, we propose an opinion dynamic model mimicking human attitudes and algorithmic features. We quantitatively assess the adherence of the model's prediction to empirical data and compare the model performances with other state-of-the-art models. We finally provide a synthetic description of social media platforms regarding the model's parameters space that may be used to fine-tune feed algorithms to eventually smooth extreme polarization.
翻译:一些研究指出,用户寻求他们最喜欢的信息,过滤不同的信息,并围绕共享的叙事将观点相似的用户群体联合起来。进料算法可能会打破这种向两极分化的配置,从而影响信息(和错误信息)如何在网上传播。然而,尽管关于两极分化意见空间和回声室的大量证据和数据,人类和算法因素在形成这些现象方面的相互作用仍然不明确。在这项工作中,我们提出了一个模仿人类态度和算法特征的意见动态模型。我们从数量上评估模型预测是否符合经验性数据,并将模型的性能与其他最新模型进行比较。我们最后对关于模型参数空间的社会媒体平台作了综合描述,这些平台可用于微调算法,最终平滑极端两极化。