Recent optical flow methods are almost exclusively judged in terms of accuracy, while their robustness is often neglected. Although adversarial attacks offer a useful tool to perform such an analysis, current attacks on optical flow methods focus on real-world attacking scenarios rather than a worst case robustness assessment. Hence, in this work, we propose a novel adversarial attack - the Perturbation-Constrained Flow Attack (PCFA) - that emphasizes destructivity over applicability as a real-world attack. PCFA is a global attack that optimizes adversarial perturbations to shift the predicted flow towards a specified target flow, while keeping the L2 norm of the perturbation below a chosen bound. Our experiments demonstrate PCFA's applicability in white- and black-box settings, and show it finds stronger adversarial samples than previous attacks. Based on these strong samples, we provide the first joint ranking of optical flow methods considering both prediction quality and adversarial robustness, which reveals state-of-the-art methods to be particularly vulnerable. Code is available at https://github.com/cv-stuttgart/PCFA.


翻译:最近光学流动方法几乎完全以准确性来判断,而其稳健性往往被忽视。虽然对抗性攻击是进行这种分析的有用工具,但目前对光学流动方法的攻击侧重于现实世界攻击的情景,而不是最差的个案稳健性评估。因此,在这项工作中,我们提议进行新的对抗性攻击,即围攻-封闭式流动攻击(PCFA),强调破坏性,而不是作为真实世界攻击的适用性。PCFA是一种全球性攻击,它优化了对抗性干扰,将预测的流量转向特定的目标流量,同时将扰动的L2规范维持在选定的约束之下。我们的实验显示PCFA在白箱和黑箱环境中的可适用性,并显示它发现比以前的攻击更强的对抗性样品。基于这些强的样本,我们提供了考虑到预测质量和对抗性强性流动方法的第一联合排名,它揭示了特别脆弱的状态-艺术方法。代码见https://github.com/cv-stgart/PCFA。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adversarial Examples in Constrained Domains
Arxiv
0+阅读 · 2022年9月9日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员