Recent work has empirically shown that deep neural networks latch on to the Fourier statistics of training data and show increased sensitivity to Fourier-basis directions in the input. Understanding and modifying this Fourier-sensitivity of computer vision models may help improve their robustness. Hence, in this paper we study the frequency sensitivity characteristics of deep neural networks using a principled approach. We first propose a basis trick, proving that unitary transformations of the input-gradient of a function can be used to compute its gradient in the basis induced by the transformation. Using this result, we propose a general measure of any differentiable model's Fourier-sensitivity using the unitary Fourier-transform of its input-gradient. When applied to deep neural networks, we find that computer vision models are consistently sensitive to particular frequencies dependent on the dataset, training method and architecture. Based on this measure, we further propose a Fourier-regularization framework to modify the Fourier-sensitivities and frequency bias of models. Using our proposed regularizer-family, we demonstrate that deep neural networks obtain improved classification accuracy on robustness evaluations.
翻译:最近的工作从经验上表明,深神经网络与Fourier培训数据统计数据的Fourier统计相连接,并显示输入中对Fourier-basis方向的敏感度提高。了解和修改计算机视觉模型的Fourier敏感度可能有助于提高这些模型的稳健性。因此,在本文件中,我们利用原则方法研究深神经网络的频率敏感度特点。我们首先提出一个基础把戏,证明一个函数的投入梯度的单一变换可以用来在变换所引出的基础上计算其梯度。我们利用这一结果,提出使用其输入梯度的单一Fourier- Transformaty-graphy来测量任何不同的模型的宽度。在应用深神经网络时,我们发现计算机视觉模型始终对取决于数据集、培训方法和结构的特定频率具有敏感性。我们根据这一计量,进一步提议一个四向常规化框架,以修改模型的四向敏感度和频度偏差。我们提议的正规化-家庭利用我们提议的正规化-家庭,我们证明深神经网络在稳健度评价方面获得了更好的分类准确性。