Is it possible to leverage large scale raw and raw parallel corpora to build a general learned metric? Existing learned metrics have gaps to human judgements, are model-dependent or are limited to the domains or tasks where human ratings are available. In this paper, we propose SEScore2, a model-based metric pretrained over million-scale synthetic dataset constructed by our novel retrieval augmented data synthesis pipeline. SEScore2 achieves high correlation to human judgements without any human rating supervisions. Importantly, our unsupervised SEScore2 can outperform supervised metrics, which are trained on the News human ratings, at the TED domain. We evaluate SEScore2 over four text generation tasks across three languages. SEScore2 outperforms all prior unsupervised evaluation metrics in machine translation, speech translation, data-to-text and dialogue generation, with average Kendall improvements 0.158. SEScore2 even outperforms SOTA supervised BLEURT at data-to-text, dialogue generation and overall correlation.


翻译:能否利用大规模原始和原始平行公司来构建一个普遍学习的衡量标准? 现有的学习指标在人类判断方面存在差距,取决于模型,或限于人类评级的领域或任务。在本文中,我们提议SEScore2,一个由我们的新检索所建造的、以模型为基础的、预先训练的超过100万比例的合成数据集。SEScore2在没有任何人类评级监督的情况下,实现了与人类判断的高度相关性。重要的是,我们未经监督的SEScore2, 能够优于在TED领域接受关于《新闻》人类评级培训的受监督的衡量标准。我们评估SEScore2, 而不是在三种语言的四种文本生成任务中。SEScore2比所有先前未经监督的机器翻译、语音翻译、数据对文本和对话生成的评价指标都好,平均Kendall改进0.18。SEScore2甚至比SOTA还差。 在数据对文本、对话生成和总体相关性方面,SLEURRT监督的SERT。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月16日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员