We investigate the calibration of estimations to increase performance with an optimal monotone transform on the estimator outputs. We start by studying the traditional square error setting with its weighted variant and show that the optimal monotone transform is in the form of a unique staircase function. We further show that this staircase behavior is preserved for general strictly convex loss functions. Their optimal monotone transforms are also unique, i.e., there exist a single staircase transform that achieves the minimum loss. We propose a linear time and space algorithm that can find such optimal transforms for specific loss settings. Our algorithm has an online implementation where the optimal transform for the samples observed so far are found in linear space and amortized time when the samples arrive in an ordered fashion. We also extend our results to cases where the functions are not trivial to individually optimize and propose an anytime algorithm, which has linear space and pseudo-linearithmic time complexity.
翻译:我们调查估算的校准,以便提高性能,对估计输出值进行最佳单质变换。 我们首先研究传统的平方误差设置及其加权变量, 并显示最佳单质变换以独特的楼梯函数的形式出现。 我们进一步显示, 这种阶梯行为保留在一般的严格 convex 损失函数中。 它们的最佳单质变换也是独一无二的, 也就是说, 存在一个能达到最低损失的单层阶梯变换。 我们提出一个线性时间和空间算法, 可以找到特定损失设置的这种最佳变换。 我们的算法有一个在线操作, 在线性空间中可以找到迄今观察到的样品的最佳变换, 当样品以定序方式到达时, 则在线性空间中可以找到最佳变换。 我们还将结果推广到那些功能并非微不足道的个别优化的案例中, 并随时提出一种算法, 它具有线性空间和伪线性线性时间复杂性 。