Automatic segmentation methods are an important advancement in medical image analysis. Machine learning techniques, and deep neural networks in particular, are the state-of-the-art for most medical image segmentation tasks. Issues with class imbalance pose a significant challenge in medical datasets, with lesions often occupying a considerably smaller volume relative to the background. Loss functions used in the training of deep learning algorithms differ in their robustness to class imbalance, with direct consequences for model convergence. The most commonly used loss functions for segmentation are based on either the cross entropy loss, Dice loss or a combination of the two. We propose the Unified Focal loss, a new hierarchical framework that generalises Dice and cross entropy-based losses for handling class imbalance. We evaluate our proposed loss function on five publicly available, class imbalanced medical imaging datasets: CVC-ClinicDB, Digital Retinal Images for Vessel Extraction (DRIVE), Breast Ultrasound 2017 (BUS2017), Brain Tumour Segmentation 2020 (BraTS20) and Kidney Tumour Segmentation 2019 (KiTS19). We compare our loss function performance against six Dice or cross entropy-based loss functions, across 2D binary, 3D binary and 3D multiclass segmentation tasks, demonstrating that our proposed loss function is robust to class imbalance and consistently outperforms the other loss functions. Source code is available at: https://github.com/mlyg/unified-focal-loss
翻译:自动分割法是医学图像分析的一个重要进步。机器学习技术,特别是深神经网络,是大多数医学图像分割任务的最先进技术。阶级不平衡问题在医疗数据集中构成重大挑战,其损害量往往比背景要小得多。深学习算法培训中所使用的损失功能在稳性与阶级不平衡方面有所不同,对模式趋同产生直接后果。分离最常用的损失函数基于交叉导体损失、骰子损失或两者的组合。我们提出了统一计算损失,这是一个新的等级框架,概括了迪氏和跨星系损失,用于处理阶级不平衡。我们评估了五个公开存在的、等级不平衡的医疗成像数据集中的拟议损失函数:CVC-ClinicDBD、Vessel Explecton(DRive)、2017年乳房超声波(BUS2017)、2020年大脑图纸色分解(BraTS20)和Kidney Tumper Creacation 2019(KITS19) 新的等级框架框架。我们不断比较了六种损失函数, 和双级损失分系统(BinLA) 。我们提议的第2级损失函数。