We consider sequential optimization of an unknown function under Gaussian process models. We develop a computationally efficient algorithm that reduces the complexity of the prevailing GP-UCB family of algorithms by a factor of $O(T^{2d-1})$ (where $T$ is the time horizon and $d$ the dimension of the function domain). The algorithm is also shown to have order-optimal regret performance (up to a poly-logarithmic factor). The basic structure of the proposed algorithm is a tree-based \emph{localized} search strategy guided by a localized optimization procedure for finding function values exceeding an iteratively updated threshold. More specifically, the global optimum is approached through a sequence of localized searches in the domain of the function guided by an iterative search in the range of the function.
翻译:我们考虑在高斯进程模型下按顺序优化一个未知功能。 我们开发了一个计算高效的算法, 将通用的GP- UCB算法组合的复杂程度降低到一个因数$O( T ⁇ 2d-1}) (美元是时间范围,美元是函数域的维度) 。 算法还显示有排序- 最优的遗憾性能( 最高为多元对数系数 ) 。 提议的算法的基本结构是树基\ emph{ locized} 搜索战略, 以本地优化程序为指导, 以查找超过迭代更新阈值的功能值。 更具体地说, 全球最佳办法是在函数域内进行一系列局部搜索, 由函数范围的迭代搜索指导 。