The accuracy and effectiveness of Hermite spectral methods for the numerical discretization of partial differential equations on unbounded domains, are strongly affected by the amplitude of the Gaussian weight function employed to describe the approximation space. This is particularly true if the problem is under-resolved, i.e., there are no enough degrees of freedom. The issue becomes even more crucial when the equation under study is time-dependent, forcing in this way the choice of Hermite functions where the corresponding weight depends on time. In order to adapt dynamically the approximation space, it is here proposed an automatic decision-making process that relies on machine learning techniques, such as deep neural networks and support vector machines. The algorithm is numerically tested with success on a simple 1D problem, but the main goal is its exportability in the context of more serious applications.


翻译:赫米特光谱法的精确度和有效性受到用于描述近似空间的高西亚重量函数的放大的严重影响。如果问题解决不足,即没有足够的自由度,则情况尤其如此。当所研究的方程取决于时间时,问题就变得更加重要,从而迫使在相应重量取决于时间的情况下选择赫米特函数。为了动态地适应近似空间,这里建议采用自动决策程序,依靠机器学习技术,如深神经网络和支持矢量机器。算法在数字上测试了简单的1D问题的成功,但主要目标是在更严重的应用中可出口。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
341+阅读 · 2020年1月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
教程推荐 | 机器学习、Python等最好的150余个教程
七月在线实验室
7+阅读 · 2018年6月6日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
教程推荐 | 机器学习、Python等最好的150余个教程
七月在线实验室
7+阅读 · 2018年6月6日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员