Quantum information decoupling is a fundamental quantum information processing task, which also serves as a crucial tool in a diversity of topics in quantum physics. In this paper, we characterize the reliability function of catalytic quantum information decoupling, that is, the best exponential rate under which perfect decoupling is asymptotically approached. We have obtained the exact formula when the decoupling cost is below a critical value. In the situation of high cost, we provide upper and lower bounds. This result is then applied to quantum state merging, exploiting its inherent connection to decoupling. In addition, as technical tools, we derive the exact exponents for the smoothing of the conditional min-entropy and max-information, and we prove a novel bound for the convex-split lemma. Our results are given in terms of the sandwiched R\'enyi divergence, providing it with a new type of operational meaning in characterizing how fast the performance of quantum information tasks approaches the perfect.
翻译:量子信息脱钩是一项基本的量子信息处理任务,它也是量子物理中多种专题的关键工具。在本文中,我们描述催化量子信息脱钩的可靠性功能,即完全脱钩的最好指数速率,即完全脱钩是平时接近的最佳指数率。当脱钩成本低于临界值时,我们获得了精确的公式。在成本高的情况下,我们提供了上下界限。然后,这个结果应用于量子状态的合并,利用其内在的脱钩连接。此外,作为技术工具,我们为平滑有条件的微粒和最大信息得出精确的指数,我们证明我们对于圆锥体-螺旋 Lemma具有新颖的结合。我们的结果以三明治R\'enyi的差异来说明我们的结果,为量子信息任务的迅速性能如何接近完美提供了一种新的操作含义。