Existing model validation studies in geoscience often disregard or partly account for uncertainties in observations, model choices, and input parameters. In this work, we develop a statistical framework that incorporates a probabilistic modeling technique using a fully Bayesian approach to perform a quantitative uncertainty-aware validation. A Bayesian perspective on a validation task yields an optimal bias-variance trade-off against the reference data. It provides an integrative metric for model validation that incorporates parameter and conceptual uncertainty. Additionally, a surrogate modeling technique, namely Bayesian Sparse Polynomial Chaos Expansion, is employed to accelerate the computationally demanding Bayesian calibration and validation. We apply this validation framework to perform a comparative evaluation of models for coupling a free flow with a porous-medium flow. The correct choice of interface conditions and proper model parameters for such coupled flow systems is crucial for physically consistent modeling and accurate numerical simulations of applications. We develop a benchmark scenario that uses the Stokes equations to describe the free flow and considers different models for the porous-medium compartment and the coupling at the fluid--porous interface. These models include a porous-medium model using Darcy's law at the representative elementary volume scale with classical or generalized interface conditions and a pore-network model with its related coupling approach. We study the coupled flow problems' behaviors considering a benchmark case, where a pore-scale resolved model provides the reference solution. With the suggested framework, we perform sensitivity analysis, quantify the parametric uncertainties, demonstrate each model's predictive capabilities, and make a probabilistic model comparison.
翻译:地球科学的现有模型验证研究往往忽视或部分考虑到观察、模型选择和输入参数的不确定性。在这项工作中,我们开发了一个统计框架,其中包括一种概率模型技术,采用完全巴伊西亚方法进行定量不确定性验证。巴伊西亚关于验证任务的观点产生了一种最佳的偏差权衡,与参考数据相比,它提供了一种包含参数和概念不确定性的综合模型验证指标。此外,还采用了一种替代模型技术,即Bayesian Sparse Polnicial Choos 扩展,以加速计算性要求Bayesian校准和校准。我们应用这一验证框架对模型进行比较评价,以便用松散的中流量混合模型进行自由流动。正确选择接口条件和适当的模型参数对于这种混合流动系统对于实际一致的模型和准确的数字模拟至关重要。我们开发了一种基准假设假设情景,用Stoks 模型来描述自由流动模式,并考虑多孔化中间舱的模型和液态界面连接界面。这些模型包括一种测试-role-bal-mobilable 分析模型,其中我们用一个具有代表性的模型,我们用一个具有代表性的模型来分析。