This paper considers outdoor terrain mapping using RGB images obtained from an aerial vehicle. While feature-based localization and mapping techniques deliver real-time vehicle odometry and sparse keypoint depth reconstruction, a dense model of the environment geometry and semantics (vegetation, buildings, etc.) is usually recovered offline with significant computation and storage. This paper develops a joint 2D-3D learning approach to reconstruct a local metric-semantic mesh at each camera keyframe maintained by a visual odometry algorithm. Given the estimated camera trajectory, the local meshes can be assembled into a global environment model to capture the terrain topology and semantics during online operation. A local mesh is reconstructed using an initialization and refinement stage. In the initialization stage, we estimate the mesh vertex elevation by solving a least squares problem relating the vertex barycentric coordinates to the sparse keypoint depth measurements. In the refinement stage, we associate 2D image and semantic features with the 3D mesh vertices using camera projection and apply graph convolution to refine the mesh vertex spatial coordinates and semantic features based on joint 2D and 3D supervision. Quantitative and qualitative evaluation using real aerial images show the potential of our method to support environmental monitoring and surveillance applications.
翻译:本文用从飞行器上获取的 RGB 图像来考虑户外地形绘图。 虽然基于地貌的定位和绘图技术可以提供实时的车辆地形测量和稀疏关键点深度重建, 但环境几何和语义学( 植被、 建筑物等) 的密集模型通常会通过大量计算和储存从线下回收。 本文开发了一种2D-3D 联合学习方法, 以重建由视觉观察测量算法维持的每个摄像头关键框架的当地度- 测距。 根据估计的摄像轨迹, 当地的网目和绘图技术可以组装成全球环境模型, 以在在线操作中捕捉到地形表层表层和语义学。 本地网目利用初始化和精细化阶段重建。 在初始化阶段, 我们通过解决与稀薄关键点深度测量有关的脊椎中心坐标最小方位问题, 来估计网格的垂直高度升高。 在精细的阶段, 我们将 2D 图像和语系特征与3D 图像结合, 使用摄像投影图和图变变图, 以改进Mex 3D 空间空间坐标坐标坐标和测图,, 显示我们2 和图像的定性监测 。