It has long been known that photonic science and especially photonic communications can raise the speed of technologies and producing manufacturing. More recently, photonic science has also been interested in its capabilities to implement low-precision linear operations, such as matrix multiplications, fast and effciently. For a long time most scientists taught that Electronics is the end of science but after many years and about 35 years ago had been understood that electronics do not answer alone and should have a new science. Today we face modern ways and instruments for doing tasks as soon as possible in proportion to many decays before. The velocity of progress in science is very fast. All our progress in science area is dependent on modern knowledge about new methods. In this research, we want to review the concept of a photonic neural network. For this research was selected 18 main articles were among the main 30 articles on this subject from 2015 to the 2022 year. These articles noticed three principles: 1- Experimental concepts, 2- Theoretical concepts, and, finally 3- Mathematic concepts. We should be careful with this research because mathematics has a very important and constructive role in our topics! One of the topics that are very valid and also new, is simulation. We used to work with simulation in some parts of this research. First, briefly, we start by introducing photonics and neural networks. In the second we explain the advantages and disadvantages of a combination of both in the science world and industries and technologies about them. Also, we are talking about the achievements of a thin modern science. Third, we try to introduce some important and valid parameters in neural networks. In this manner, we use many mathematic tools in some portions of this article.


翻译:长期以来人们一直知道光学和特别是光学通信可以提高技术和生产制造的速度。最近,光学科学也对其执行低精度线性操作的能力感兴趣,例如矩阵乘数、快速和精巧。在很长一段时间里,大多数科学家教授电子是科学的终点,但在多年和大约35年前,人们就已经认识到,电子系统不单独回答,应该有一种新的科学。今天,我们面临现代方法和工具,可以尽快完成与以前许多衰败成比例的任务。科学进步的速度非常快。我们在科学领域的所有进步都取决于关于新方法的现代知识。在这个研究中,我们要审查光学神经网络的概念。因为从2015年到2022年,这一研究被选取了18篇主要文章,这是关于这个主题的主要30篇文章之一。这些文章注意到三个原则:实验概念、2个理论概念,以及最后3个数学概念。我们应该小心地研究,因为数学在我们的课题中具有非常重要和建设性的作用。我们开始这些研究时,我们先在模拟了这些科学网络中,先是用来解释这个主题,然后是用来解释我们开始的实验,然后是用来解释这些研究的。 我们在模拟中的第一部分是用来用来解释。 我们在模拟中,我们用来解释这些研究的实验中的第一部分是有效的。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员