This paper revisits the work of Rauch et al. (1965) and develops a novel method for recursive maximum likelihood particle filtering for general state-space models. The new method is based on statistical analysis of incomplete observations of the systems. Score function and conditional observed information of the incomplete observations/data are introduced and their distributional properties are discussed. Some identities concerning the score function and information matrices of the incomplete data are derived. Maximum likelihood estimation of state-vector is presented in terms of the score function and observed information matrices. In particular, to deal with nonlinear state-space, a sequential Monte Carlo method is developed. It is given recursively by an EM-gradient-particle filtering which extends the work of Lange (1995) for state estimation. To derive covariance matrix of state-estimation errors, an explicit form of observed information matrix is proposed. It extends Louis (1982) general formula for the same matrix to state-vector estimation. Under (Neumann) boundary conditions of state transition probability distribution, the inverse of this matrix coincides with the Cramer-Rao lower bound on the covariance matrix of estimation errors of unbiased state-estimator. In the case of linear models, the method shows that the Kalman filter is a fully efficient state estimator whose covariance matrix of estimation error coincides with the Cramer-Rao lower bound. Some numerical examples are discussed to exemplify the main results.


翻译:本文重新审查了Rauch等人(1965年)的工作,并开发了一种创新方法,用于为一般国家空间模型重新循环地进行最大可能性粒子过滤,新方法基于对系统不完全观测的统计分析;引入了计分功能和不完全观测/数据的有条件观察信息,并讨论了其分布属性;对不完全数据的评分函数和信息矩阵提出了一些身份和不完全数据的信息矩阵;用得分函数和观察到的信息矩阵对州矢量进行最大可能性估计;特别是,为了处理非线性状态空间,开发了一个连续的蒙特卡洛方法;以EM梯度粒子过滤法为基础,将Lange(1995年)的工作扩展为国家估算;为国家估计错误得出了记分数和不完全观察到的信息矩阵;将同一矩阵的Louis(1982年)一般公式扩展为州矢量估计;在(Neumann)国家过渡概率分布的边界条件下,该矩阵与Cramer-测得较低约束的蒙特卡洛方法;通过EM梯度-粒子过滤器过滤法过滤模型进行循环,以全面估算。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月29日
VIP会员
相关VIP内容
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员