This paper revisits the work of Rauch et al. (1965) and develops a novel method for recursive maximum likelihood particle filtering for general state-space models. The new method is based on statistical analysis of incomplete observations of the systems. Score function and conditional observed information of the incomplete observations/data are introduced and their distributional properties are discussed. Some identities concerning the score function and information matrices of the incomplete data are derived. Maximum likelihood estimation of state-vector is presented in terms of the score function and observed information matrices. In particular, to deal with nonlinear state-space, a sequential Monte Carlo method is developed. It is given recursively by an EM-gradient-particle filtering which extends the work of Lange (1995) for state estimation. To derive covariance matrix of state-estimation errors, an explicit form of observed information matrix is proposed. It extends Louis (1982) general formula for the same matrix to state-vector estimation. Under (Neumann) boundary conditions of state transition probability distribution, the inverse of this matrix coincides with the Cramer-Rao lower bound on the covariance matrix of estimation errors of unbiased state-estimator. In the case of linear models, the method shows that the Kalman filter is a fully efficient state estimator whose covariance matrix of estimation error coincides with the Cramer-Rao lower bound. Some numerical examples are discussed to exemplify the main results.
翻译:本文重新审查了Rauch等人(1965年)的工作,并开发了一种创新方法,用于为一般国家空间模型重新循环地进行最大可能性粒子过滤,新方法基于对系统不完全观测的统计分析;引入了计分功能和不完全观测/数据的有条件观察信息,并讨论了其分布属性;对不完全数据的评分函数和信息矩阵提出了一些身份和不完全数据的信息矩阵;用得分函数和观察到的信息矩阵对州矢量进行最大可能性估计;特别是,为了处理非线性状态空间,开发了一个连续的蒙特卡洛方法;以EM梯度粒子过滤法为基础,将Lange(1995年)的工作扩展为国家估算;为国家估计错误得出了记分数和不完全观察到的信息矩阵;将同一矩阵的Louis(1982年)一般公式扩展为州矢量估计;在(Neumann)国家过渡概率分布的边界条件下,该矩阵与Cramer-测得较低约束的蒙特卡洛方法;通过EM梯度-粒子过滤器过滤法过滤模型进行循环,以全面估算。