Conventional automatic speaker verification systems can usually be decomposed into a front-end model such as time delay neural network (TDNN) for extracting speaker embeddings and a back-end model such as statistics-based probabilistic linear discriminant analysis (PLDA) or neural network-based neural PLDA (NPLDA) for similarity scoring. However, the sequential optimization of the front-end and back-end models may lead to a local minimum, which theoretically prevents the whole system from achieving the best optimization. Although some methods have been proposed for jointly optimizing the two models, such as the generalized end-to-end (GE2E) model and NPLDA E2E model, all of these methods are designed for use with a single enrollment utterance. In this paper, we propose a new E2E joint method for speaker verification especially designed for the practical case of multiple enrollment utterances. In order to leverage the intra-relationship among multiple enrollment utterances, our model comes equipped with frame-level and utterance-level attention mechanisms. We also utilize several data augmentation techniques, including conventional noise augmentation using MUSAN and RIRs datasets and a unique speaker embedding-level mixup strategy for better optimization.


翻译:常规的自动扬声器核查系统通常可以分解成前端模式,例如用于提取演讲者嵌入器的时间延迟神经网络(TDNNN)和用于提取演讲者到终端(GE2E)模型和NPLDA E2E模型等后端模型的后端模型,而所有这些方法都设计用于单一的录入语量分析(PLDA)或基于神经网络的神经PLDA(NPLDA)类似评分。然而,前端和后端模型的顺序优化可能会导致一个本地最小值,从理论上说,这阻碍整个系统实现最佳优化。虽然已经为联合优化这两种模型提出了一些方法,例如通用端对端(GE2E)模型和NPLDA E2E模型,但所有这些方法都是设计用于使用单一录入语量的概率分析(PLDA)分析(PLDA)或基于神经网络的神经神经神经系统(NPLDA)(NPLDA)(NPDA)(NPDA)(NPLDA)(N)或神经网络的类似评分分数)的神经系统),然而,前端和后端系统优化,前端和后端和后端核查系统模式可能会导致地方最小值优化,但前端核查模式可能会导致形成一个最小最小最小最小最小最小最小最小最小最小最小最小最小最小的最小值优化,从而最小最小最小最小化模式,因为前端和后端和后端和后端和后端和后端和后端模型,从而导致最小化的最小化模式,从而导致最小化模式可能导致最小化的最小化的最小化的最小化的最小化的最小化的最小化的最小化的最小化的最小化的最小化的最小化模式可能导致化的最小化的最小化的最小化,但后端和后端和后端和后端和后端和后端和后端和后端调节化,但后端调节式优化优化优化优化优化化模式可能会积化模式可能化,但后端和后端和后端和后端优化化的最小化的最小化,但后端和后端和后端和后端和后端和后端调节化的最小化的最小化的最小化模式可能导致的最小化的最小化,

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月14日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员