Bond graph is a unified graphical approach for describing the dynamics of complex engineering and physical systems and is widely adopted in a variety of domains, such as, electrical, mechanical, medical, thermal and fluid mechanics. Traditionally, these dynamics are analyzed using paper-and-pencil proof methods and computer-based techniques. However, both of these techniques suffer from their inherent limitations, such as human-error proneness, approximations of results and enormous computational requirements. Thus, these techniques cannot be trusted for performing the bond graph based dynamical analysis of systems from the safety-critical domains like robotics and medicine. Formal methods, in particular, higher-order-logic theorem proving, can overcome the shortcomings of these traditional methods and provide an accurate analysis of these systems. It has been widely used for analyzing the dynamics of engineering and physical systems. In this paper, we propose to use higher-order-logic theorem proving for performing the bond graph based analysis of the physical systems. In particular, we provide formalization of bond graph, which mainly includes functions that allow conversion of a bond graph to its corresponding mathematical model (state-space model) and the verification of its various properties, such as, stability. To illustrate the practical effectiveness of our proposed approach, we present the formal stability analysis of a prosthetic mechatronic hand using HOL Light theorem prover. Moreover, to help non-experts in HOL, we encode our formally verified stability theorems in MATLAB to perform the stability analysis of an anthropomorphic prosthetic mechatronic hand.


翻译:邦德图是一个用于描述复杂的工程和物理系统的动态的统一图形化方法,广泛用于多个领域,例如电气、机械、医疗、热力和流体力学。传统上,这些动态学用纸和硬体验证法和计算机技术进行分析。但是,这两种技术都有内在的局限性,例如人性易感、结果近似和巨大的计算要求。因此,这些技术无法被信任用于对诸如机器人和医学等安全关键领域系统进行债券图形化动态分析。正规方法,特别是更高秩序-逻辑理论的验证,可以克服这些传统方法的缺点,并对这些系统进行准确的分析。这些技术被广泛用于分析工程和物理系统的动态。在本文件中,我们提议使用更高秩序-逻辑学理论来证明对物理系统进行债券图形分析。我们特别提供债券图表的正规化,其中主要包括能够将债券图转换为相应的数学模型(状态-空间模型)的功能,可以克服这些传统方法的缺点,并对这些系统进行准确的分析。我们用目前模拟系统稳定性分析来验证我们目前正式的模型,用以说明我们目前模拟的稳定性。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年8月8日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
51+阅读 · 2020年8月25日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月27日
Arxiv
0+阅读 · 2022年1月27日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年8月8日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
51+阅读 · 2020年8月25日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员