Statistical relational AI and probabilistic logic programming have so far mostly focused on discrete probabilistic models. The reasons for this is that one needs to provide constructs to succinctly model the independencies in such models, and also provide efficient inference. Three types of independencies are important to represent and exploit for scalable inference in hybrid models: conditional independencies elegantly modeled in Bayesian networks, context-specific independencies naturally represented by logical rules, and independencies amongst attributes of related objects in relational models succinctly expressed by combining rules. This paper introduces a hybrid probabilistic logic programming language, DC#, which integrates distributional clauses' syntax and semantics principles of Bayesian logic programs. It represents the three types of independencies qualitatively. More importantly, we also introduce the scalable inference algorithm FO-CS-LW for DC#. FO-CS-LW is a first-order extension of the context-specific likelihood weighting algorithm (CS-LW), a novel sampling method that exploits conditional independencies and context-specific independencies in ground models. The FO-CS-LW algorithm upgrades CS-LW with unification and combining rules to the first-order case.
翻译:迄今为止,统计关系大赦国际和概率逻辑规划大多侧重于离散的概率模型,其原因是,需要提供结构,以简明扼要地模拟这些模型中的不依赖性,并提供有效的推断。三种类型的依赖性对于在混合模型中代表和利用可缩放的推论非常重要:在巴伊西亚网络中以优美模式建模的有条件的不依赖性、逻辑规则自然代表的特定背景的不依赖性,以及在以合并规则简洁表达的关联模型中相关对象的属性之间的不依赖性。本文采用了一种混合的概率逻辑编程语言DC#,其中整合了巴伊西亚逻辑方案的分配条款的合成法和语义原则。它代表三种类型的不相称性定性。更重要的是,我们还为DC# 引入了可缩放的推算法FO-CS-LW。 FFO-CS-LW是环境特定概率加权算法(CS-LW)的首级扩展,这是在具体背景和具体背景模型中将CFOFS-LFAS-L-CS-C-CS-CFO-CS-CS-CS-CS-CFOL-CFOS-CS-CS-CS-CS-CS-CS-CFOR-Lis-CS-CFOS-CFO-S-S-S-S-S-S-S-S-S-S-S-S-S-CFOFAR-S-S-S-S-S-S-S-S-CFornicLisldal-CS-CS-S-C-C-C-S-S-S-S-S-C-C-C-S-S-S-S-S-S-C-C-C-C-C-C-C-S-S-S-C-C-C-S-C-C-C-C-C-CFAFAFAFF-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-