We present a hybrid sampling-surrogate approach for reducing the computational expense of uncertainty quantification in nonlinear dynamical systems. Our motivation is to enable rapid uncertainty quantification in complex mechanical systems such as automotive propulsion systems. Our approach is to build upon ideas from multifidelity uncertainty quantification to leverage the benefits of both sampling and surrogate modeling, while mitigating their downsides. In particular, the surrogate model is selected to exploit problem structure, such as smoothness, and offers a highly correlated information source to the original nonlinear dynamical system. We utilize an intrusive generalized Polynomial Chaos surrogate because it avoids any statistical errors in its construction and provides analytic estimates of output statistics. We then leverage a Monte Carlo-based Control Variate technique to correct the bias caused by the surrogate approximation error. The primary theoretical contribution of this work is the analysis and solution of an estimator design strategy that optimally balances the computational effort needed to adapt a surrogate compared with sampling the original expensive nonlinear system. While previous works have similarly combined surrogates and sampling, to our best knowledge this work is the first to provide rigorous analysis of estimator design. We deploy our approach on multiple examples stemming from the simulation of mechanical automotive propulsion system models. We show that the estimator is able to achieve orders of magnitude reduction in mean squared error of statistics estimation in some cases under comparable costs of purely sampling or purely surrogate approaches.
翻译:在非线性动态系统中,我们提出了一种混合采样覆盖模型,以减少不确定性量化计算成本,在非线性动态系统中减少不确定性量化的计算费用; 我们的动机是在汽车推进系统等复杂的机械系统中进行快速的不确定性量化; 我们的办法是利用多纤维性不确定性量化概念,利用采样和代用模型的效益,同时减轻其下坡效应; 特别是, 选择代用模型,利用问题结构,如平稳性,为原非线性动态系统提供一个高度相关的信息来源; 我们使用一种侵扰性普遍通用的多元合成合成替代机器人,因为它避免了汽车推进系统建设中的任何统计错误,提供了对产出统计数据的分析性估计; 我们然后利用一种基于蒙特卡洛控制的控制维雅特技术,以纠正由代孕近差错误造成的偏差; 这项工作的主要理论贡献是分析和解决一个估算师设计战略,以最佳的方式平衡了调整替代原成本较高的非线性估算系统的计算方法所需的计算工作; 我们以前的一些工程在模拟中也同时结合了任何统计误差和抽样,我们的最佳估算系统在模拟工作中的精确性统计中,首先展示了我们机能性估算的精确性分析。