Bridging geometry and topology, curvature is a powerful and expressive invariant. While the utility of curvature has been theoretically and empirically confirmed in the context of manifolds and graphs, its generalization to the emerging domain of hypergraphs has remained largely unexplored. On graphs, the Ollivier-Ricci curvature measures differences between random walks via Wasserstein distances, thus grounding a geometric concept in ideas from probability theory and optimal transport. We develop ORCHID, a flexible framework generalizing Ollivier-Ricci curvature to hypergraphs, and prove that the resulting curvatures have favorable theoretical properties. Through extensive experiments on synthetic and real-world hypergraphs from different domains, we demonstrate that ORCHID curvatures are both scalable and useful to perform a variety of hypergraph tasks in practice.
翻译:沟通几何和拓扑,曲率是一个强大且具有表现力的不变量。尽管曲率的实用性已在流形和图的背景下在理论和经验上得到了确认,但将曲率推广到新兴领域的超图领域仍然未受到广泛探索。对于图形而言,Ollivier-Ricci 曲率通过 Wasserstein 距离计量随机漫步之间的差异,从而将几何概念和概率理论和最优传输的思想相关联。 我们开发出ORCHID这种灵活的框架,将 Ollivier-Ricci 曲率泛化到超图,并证明了由此产生的曲率具有有利的理论特性。通过针对来自不同领域的合成和真实世界超图的大量实验,我们证明了 ORCHID 曲率在实践中既可扩展又有用于执行各种超图任务。