Recently proposed 3D object reconstruction methods represent a mesh with an atlas - a set of planar patches approximating the surface. However, their application in a real-world scenario is limited since the surfaces of reconstructed objects contain discontinuities, which degrades the quality of the final mesh. This is mainly caused by independent processing of individual patches, and in this work, we postulate to mitigate this limitation by preserving local consistency around patch vertices. To that end, we introduce a Locally Conditioned Atlas (LoCondA), a framework for representing a 3D object hierarchically in a generative model. Firstly, the model maps a point cloud of an object into a sphere. Secondly, by leveraging a spherical prior, we enforce the mapping to be locally consistent on the sphere and on the target object. This way, we can sample a mesh quad on that sphere and project it back onto the object's manifold. With LoCondA, we can produce topologically diverse objects while maintaining quads to be stitched together. We show that the proposed approach provides structurally coherent reconstructions while producing meshes of quality comparable to the competitors.
翻译:最近提议的 3D 对象重建方法代表了一个带有地图集的网格—— 一组平板块, 接近表面。 然而, 它们在现实世界情景中的应用有限, 因为重建对象的表面含有不连续性, 这会降低最后网格的质量。 这主要是单个补丁的独立处理造成的, 在这项工作中, 我们假设通过在补丁垂直周围保持地方一致性来减轻这一限制。 为此, 我们引入了一个本地修饰的地图集( LoCondA), 一个在基因模型中按等级代表3D 对象的框架。 首先, 模型将一个对象的点云映射到一个球体中。 第二, 我们通过利用球形前的功能, 强制绘制地图, 在球体和目标对象上保持地方的一致性。 这样, 我们可以在球体上采集一个网格的网格, 并将其投射回到对象的方形上。 有了 LoCondA, 我们就可以生成一个地形多样性多样化的天体, 并同时保持组合组合在一起。 我们展示了拟议的方法提供了结构上连贯的重建方法, 同时制作了具有可比性的竞争者。