Recently proposed 3D object reconstruction methods represent a mesh with an atlas - a set of planar patches approximating the surface. However, their application in a real-world scenario is limited since the surfaces of reconstructed objects contain discontinuities, which degrades the quality of the final mesh. This is mainly caused by independent processing of individual patches, and in this work, we postulate to mitigate this limitation by preserving local consistency around patch vertices. To that end, we introduce a Locally Conditioned Atlas (LoCondA), a framework for representing a 3D object hierarchically in a generative model. Firstly, the model maps a point cloud of an object into a sphere. Secondly, by leveraging a spherical prior, we enforce the mapping to be locally consistent on the sphere and on the target object. This way, we can sample a mesh quad on that sphere and project it back onto the object's manifold. With LoCondA, we can produce topologically diverse objects while maintaining quads to be stitched together. We show that the proposed approach provides structurally coherent reconstructions while producing meshes of quality comparable to the competitors.


翻译:最近提议的 3D 对象重建方法代表了一个带有地图集的网格—— 一组平板块, 接近表面。 然而, 它们在现实世界情景中的应用有限, 因为重建对象的表面含有不连续性, 这会降低最后网格的质量。 这主要是单个补丁的独立处理造成的, 在这项工作中, 我们假设通过在补丁垂直周围保持地方一致性来减轻这一限制。 为此, 我们引入了一个本地修饰的地图集( LoCondA), 一个在基因模型中按等级代表3D 对象的框架。 首先, 模型将一个对象的点云映射到一个球体中。 第二, 我们通过利用球形前的功能, 强制绘制地图, 在球体和目标对象上保持地方的一致性。 这样, 我们可以在球体上采集一个网格的网格, 并将其投射回到对象的方形上。 有了 LoCondA, 我们就可以生成一个地形多样性多样化的天体, 并同时保持组合组合在一起。 我们展示了拟议的方法提供了结构上连贯的重建方法, 同时制作了具有可比性的竞争者。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年4月5日
Arxiv
6+阅读 · 2018年3月29日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员