Traffic forecasting is a problem of intelligent transportation systems (ITS) and crucial for individuals and public agencies. Therefore, researches pay great attention to deal with the complex spatio-temporal dependencies of traffic system for accurate forecasting. However, there are two challenges: 1) Most traffic forecasting studies mainly focus on modeling correlations of neighboring sensors and ignore correlations of remote sensors, e.g., business districts with similar spatio-temporal patterns; 2) Prior methods which use static adjacency matrix in graph convolutional networks (GCNs) are not enough to reflect the dynamic spatial dependence in traffic system. Moreover, fine-grained methods which use self-attention to model dynamic correlations of all sensors ignore hierarchical information in road networks and have quadratic computational complexity. In this paper, we propose a novel dynamic multi-graph convolution recurrent network (DMGCRN) to tackle above issues, which can model the spatial correlations of distance, the spatial correlations of structure, and the temporal correlations simultaneously. We not only use the distance-based graph to capture spatial information from nodes are close in distance but also construct a novel latent graph which encoded the structure correlations among roads to capture spatial information from nodes are similar in structure. Furthermore, we divide the neighbors of each sensor into coarse-grained regions, and dynamically assign different weights to each region at different times. Meanwhile, we integrate the dynamic multi-graph convolution network into the gated recurrent unit (GRU) to capture temporal dependence. Extensive experiments on three real-world traffic datasets demonstrate that our proposed algorithm outperforms state-of-the-art baselines.


翻译:交通流量预测是智能运输系统(ITS)的一个问题,对个人和公共机构至关重要。因此,研究非常关注处理交通系统复杂的时空依赖性,以便准确预测。然而,存在两个挑战:(1) 大多数交通预测研究主要侧重于模拟邻近传感器的关联,忽视远程传感器的关联性,例如具有类似时空模式的商业区;(2) 以往在图形相向网络(GCNs)中使用静相对矩阵的方法不足以反映交通系统动态的空间依赖性。此外,采用精细的门级方法,以模拟所有传感器的动态关联性模型,忽略公路网络中的等级信息,具有四面形计算复杂性。在本文件中,我们提出了一个新的动态多图经常性网络(DMGCRCRN),以解决上述问题,它可以模拟距离的空间关联性、结构的空间关联性以及时际关系。我们不仅使用远程图表,从节点到空间依赖性空间依赖性空间依赖性空间信息。此外,使用精细的门级关系模型来模拟所有传感器的动态相关关系关系关系关系关系,也构建了我们每个动态网络的相近距离,而不同方向结构的相向不同的相向不同结构。我们之间,在动态正轨关系中,我们从动态结构中,每个动态正向不同方向结构中,每个相向不同的相向不同方向的相向不同方向的相对路路路路路流数据结构中,我们之间将一个相向不同方向的相向不同方向的相向结构结构结构结构结构结构结构将一个相对一个相对一个相对一个相对一个相对一个相对一个相对一个相对一个相向数据结构进行。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
基于LSTM深层神经网络的时间序列预测
论智
21+阅读 · 2018年9月4日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
35+阅读 · 2021年1月27日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
3+阅读 · 2020年4月29日
VIP会员
相关VIP内容
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
基于LSTM深层神经网络的时间序列预测
论智
21+阅读 · 2018年9月4日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员