Several recent works on self-supervised learning are trained by mapping different augmentations of the same image to the same feature representation. The data augmentations used are of crucial importance to the quality of learned feature representations. In this paper, we analyze how the color jitter traditionally used in data augmentation negatively impacts the quality of the color features in learned feature representations. To address this problem, we propose a more realistic, physics-based color data augmentation - which we call Planckian Jitter - that creates realistic variations in chromaticity and produces a model robust to illumination changes that can be commonly observed in real life, while maintaining the ability to discriminate image content based on color information. Experiments confirm that such a representation is complementary to the representations learned with the currently-used color jitter augmentation and that a simple concatenation leads to significant performance gains on a wide range of downstream datasets. In addition, we present a color sensitivity analysis that documents the impact of different training methods on model neurons and shows that the performance of the learned features is robust with respect to illuminant variations.
翻译:最近关于自我监督学习的几项工作是通过将同一图像的不同增强量绘制成相同的特征表示法来培训。 所使用的数据增强度对于所学特征表示的质量至关重要。 在本文中, 我们分析数据中传统上使用的颜色松散是如何扩大对所学特征表示中的颜色特征质量产生消极影响的。 为了解决这个问题, 我们提出一个更加现实的、 基于物理的颜色数据增强( 我们称之为Planckian Jitter), 从而在色度方面产生现实的变异, 并产生一种在真实生活中可以常见观察到的对光化变化的强大模型, 同时保持根据颜色信息区分图像内容的能力。 实验证实, 这种表达度是对目前使用的颜色松散度表示法所学到的表示法的补充, 简单调和导致一系列下游数据集取得显著的绩效增益。 此外, 我们提出一个颜色敏感性分析, 记录不同培训方法对模型神经的影响, 并表明, 所学特征的性能与发光变异有关。