When handling complicated text images (e.g., irregular structures, low resolution, heavy occlusion, and uneven illumination), existing supervised text recognition methods are data-hungry. Although these methods employ large-scale synthetic text images to reduce the dependence on annotated real images, the domain gap still limits the recognition performance. Therefore, exploring the robust text feature representations on unlabeled real images by self-supervised learning is a good solution. However, existing self-supervised text recognition methods conduct sequence-to-sequence representation learning by roughly splitting the visual features along the horizontal axis, which limits the flexibility of the augmentations, as large geometric-based augmentations may lead to sequence-to-sequence feature inconsistency. Motivated by this, we propose a novel self-supervised Character-to-Character Distillation method, CCD, which enables versatile augmentations to facilitate general text representation learning. Specifically, we delineate the character structures of unlabeled real images by designing a self-supervised character segmentation module. Following this, CCD easily enriches the diversity of local characters while keeping their pairwise alignment under flexible augmentations, using the transformation matrix between two augmented views from images. Experiments demonstrate that CCD achieves state-of-the-art results, with average performance gains of 1.38% in text recognition, 1.7% in text segmentation, 0.24 dB (PSNR) and 0.0321 (SSIM) in text super-resolution. Code will be released soon.


翻译:当处理复杂的文本图像时(例如不规则结构、低分辨率、严重遮挡和不均匀照明),现有的有监督文本识别方法需要大量的数据。虽然这些方法使用大规模合成的文本图像来减少对标注实际图像的依赖性,但域差仍然限制了识别性能。因此,通过自监督学习在未标注的真实图像上探索鲁棒的文本特征表示是一个好的解决方案。然而,现有的自监督文本识别方法通过在水平轴上大致分割视觉特征来进行序列到序列的表示学习,这限制了增广的灵活性,因为大型几何增广可能导致序列到序列的特征不一致性。出于此原因,我们提出了一种新颖的自监督字符对齐蒸馏方法CCD(Character-to-Character Distillation),该方法能够通过自适应增广使得鲁邦文本表示学习更加通用。具体而言,我们通过设计自监督字符分割模块来刻画未标注真实图像的字符结构。随后,CCD通过图像之间的变换矩阵在灵活的增广下轻松丰富本地字符的多样性,同时保持它们的成对对齐。实验表明,CCD在文本识别、文本分割、文本超分辨率三个任务上均达到了最先进的结果,性能平均提高了1.38%、1.7%、0.24 dB(PSNR)和0.0321(SSIM)。代码即将发布。

0
下载
关闭预览

相关内容

【AAAI2023】面向领域自适应语义分割的几何感知网络
专知会员服务
21+阅读 · 2022年12月7日
【CVPR2022】MSDN: 零样本学习的互语义蒸馏网络
专知会员服务
21+阅读 · 2022年3月8日
[ICCV 2021] 联合视觉语义推理:文本识别的多级解码器
专知会员服务
19+阅读 · 2021年11月28日
【CVPR2021】基于端到端预训练的视觉-语言表征学习
专知会员服务
38+阅读 · 2021年4月9日
【CVPR2021】用于目标检测的通用实例蒸馏
专知会员服务
24+阅读 · 2021年3月22日
【AAAI2021】小样本学习多标签意图检测
专知会员服务
55+阅读 · 2020年12月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
论文浅尝 | 弱监督下极简的视觉语言预训练模型
开放知识图谱
1+阅读 · 2022年9月26日
论文浅尝 | Continual Learning for Named Entity Recognition
开放知识图谱
1+阅读 · 2022年6月25日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】端到端的弱监督语义对齐
泡泡机器人SLAM
53+阅读 · 2018年4月5日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月9日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
相关资讯
论文浅尝 | 弱监督下极简的视觉语言预训练模型
开放知识图谱
1+阅读 · 2022年9月26日
论文浅尝 | Continual Learning for Named Entity Recognition
开放知识图谱
1+阅读 · 2022年6月25日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】端到端的弱监督语义对齐
泡泡机器人SLAM
53+阅读 · 2018年4月5日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员