The shuffle mode, where songs are played in a randomized order that is decided upon for all tracks at once, is widely found and known to exist in music player systems. There are only few music enthusiasts who use this mode since it either is too random to suit their mood or it keeps on repeating the same list every time. In this paper, we propose to build a convolutional deep belief network(CDBN) that is trained to perform genre recognition based on audio features retrieved from the records of the Million Song Dataset. The learned parameters shall be used to initialize a multi-layer perceptron which takes extracted features of user's playlist as input alongside the metadata to classify to various categories. These categories will be shuffled retrospectively based on the metadata to autonomously provide with a list that is efficacious in playing songs that are desired by humans in normal conditions.


翻译:以随机顺序播放歌曲的洗牌模式, 即所有音轨同时决定的曲调, 被广泛发现并已知存在于音乐播放器系统中。 使用这种模式的音乐爱好者很少, 因为这种模式过于随机, 不适合他们的情绪, 或者每次重复相同的列表。 在本文中, 我们提议建立一个革命性深层次的信仰网络( CDBN), 受过训练, 能够根据从百万宋数据集记录中提取的音频特征进行族系识别 。 学习的参数将用于初始化一个多层的显示器, 它将提取用户播放列表的功能, 作为输入, 并按元数据进行分类 。 这些类别会根据元数据进行回溯性调整, 以便自动提供在正常条件下播放人类想要的歌曲时有效的列表 。

0
下载
关闭预览

相关内容

【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
机器之心
18+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年12月26日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年2月22日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
机器之心
18+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员