Language model pre-training has shown promising results in various downstream tasks. In this context, we introduce a cross-modal pre-trained language model, called Speech-Text BERT (ST-BERT), to tackle end-to-end spoken language understanding (E2E SLU) tasks. Taking phoneme posterior and subword-level text as an input, ST-BERT learns a contextualized cross-modal alignment via our two proposed pre-training tasks: Cross-modal Masked Language Modeling (CM-MLM) and Cross-modal Conditioned Language Modeling (CM-CLM). Experimental results on three benchmarks present that our approach is effective for various SLU datasets and shows a surprisingly marginal performance degradation even when 1% of the training data are available. Also, our method shows further SLU performance gain via domain-adaptive pre-training with domain-specific speech-text pair data.
翻译:语言模式培训前培训在各种下游任务中显示出有希望的成果。在这方面,我们引入了一种跨模式培训前培训前语言模式,称为语音-文字BERT(ST-BERT),以解决端到端口语理解(E2E SLU)的任务。 将电话后传和子字级文本作为一种投入,ST-BERT通过两个拟议的培训前任务学习了一种背景化的跨模式调整:跨模式隐蔽语言建模(CM-MLM)和跨模式有条件语言建模(CM-CLM)。三个基准的实验结果显示,我们的方法对于各种语言模块数据集是有效的,并且表明即使有1%的培训数据可用,我们的方法也表现出惊人的边际性退化。此外,我们的方法还显示了SLU通过使用特定语言对文本数据的域适应前培训进一步获得的绩效。