Field robotics in perceptually-challenging environments require fast and accurate state estimation, but modern LiDAR sensors quickly overwhelm current odometry algorithms. To this end, this paper presents a lightweight frontend LiDAR odometry solution with consistent and accurate localization for computationally-limited robotic platforms. Our Direct LiDAR Odometry (DLO) method includes several key algorithmic innovations which prioritize computational efficiency and enables the use of dense, minimally-preprocessed point clouds to provide accurate pose estimates in real-time. This is achieved through a novel keyframing system which efficiently manages historical map information, in addition to a custom iterative closest point solver for fast point cloud registration with data structure recycling. Our method is more accurate with lower computational overhead than the current state-of-the-art and has been extensively evaluated in multiple perceptually-challenging environments on aerial and legged robots as part of NASA JPL Team CoSTAR's research and development efforts for the DARPA Subterranean Challenge.
翻译:在感官挑战环境中的实地机器人需要快速和准确的状态估计,但现代的LiDAR传感器需要快速和准确的状态估计,但现代的LiDAR传感器需要快速地超越目前的odat 算法。 为此,本文件展示了一个轻型前端LiDAR odophia 解决方案,该解决方案对计算上有限的机器人平台具有一致性和准确的本地化。 我们的直接LiDAR Odoraty (DLO) 方法包括若干关键的算法创新,该方法将计算效率列为优先事项,并使得能够使用密度最小的、预处理过的点云来实时提供准确的构成估算。 这是通过一个新型的钥匙保护系统实现的,该系统能够有效管理历史地图信息,此外,还有一个为数据结构再循环的快速点云登记定制的迭代最接近点求求解器。 我们的方法比当前工艺水平低的计算运行率更准确,并在多个对空中和腿机器人的多度挑战环境进行广泛评估,作为美国航天局JPL小组COSTAR为DRPA子挑战进行的研发工作的一部分。