We establish higher-order nonasymptotic expansions for a difference between probability distributions of sums of i.i.d. random vectors in a Euclidean space. The derived bounds are uniform over two classes of sets: the set of all Euclidean balls and the set of all half-spaces. These results allow to account for an impact of higher-order moments or cumulants of the considered distributions; the obtained error terms depend on a sample size and a dimension explicitly. The new inequalities outperform accuracy of the normal approximation in existing Berry-Esseen inequalities under very general conditions. Under some symmetry assumptions on the probability distribution of random summands, the obtained results are optimal in terms of the ratio between the dimension and the sample size. The new technique which we developed for establishing nonasymptotic higher-order expansions can be interesting by itself. Using the new higher-order inequalities, we study accuracy of the nonparametric bootstrap approximation and propose a bootstrap score test under possible model misspecification. The results of the paper also include explicit error bounds for general elliptic confidence regions for an expected value of the random summands, and optimality of the Gaussian anti-concentration inequality over the set of all Euclidean balls.
翻译:我们设置了更高顺序的非补救性扩展, 以区分在 Euclidean 空间中i.d.d. 随机矢量总和的概率分布。 衍生的界限在两类组合中是统一的: 全部Euclidean球的组合和所有半空的组合。 这些结果可以说明较高顺序时刻或考虑分布的累积体的影响; 获得的误差条件取决于抽样大小和明确的尺寸。 在非常一般的条件下, 在目前Berry- Esseen 不平等的正常近似中,新的不平等优于性准确性。 在随机总和的概率分布的一些对等假设中, 所获得的结果在尺寸和样本大小之间的比例方面是最佳的。 我们为建立非随机更高顺序的更高顺序扩展而开发的新技术本身可能令人感兴趣。 我们利用新的更高顺序的不平等, 研究非对等式靴系近近, 并在可能的模型性具体化下提出靴系评分的准确性测试。 纸上的结果还包括: 最优的不平等性精度、 最优性精度的精度的精度的精度的精度的精度, 以及一般精度的精度的精度的精度的精度的精度的精度的精度, 。