The purpose of change point detection algorithms is to locate an abrupt change in the time evolution of a process. In this paper, we introduce an application of latent neural stochastic differential equations for change point detection problem. We demonstrate the detection capabilities and performance of our model on a range of synthetic and real-world datasets and benchmarks. Most of the studied scenarios show that the proposed algorithm outperforms the state-of-the-art algorithms. We also discuss the strengths and limitations of this approach and indicate directions for further improvements.
翻译:改变点检测算法的目的是定位一个过程的时间演变过程的突然变化。 在本文中,我们引入了潜在神经切分方程式用于改变点检测问题的应用。我们展示了我们模型在一系列合成和真实世界数据集和基准方面的检测能力和性能。大多数研究设想方案表明,拟议的算法优于最新算法。我们还讨论了这一方法的长处和局限性,并指明了进一步改进的方向。