Generative artificial intelligence (GenAI) and communication networks are expected to have groundbreaking synergies in 6G. Connecting GenAI agents over a wireless network can potentially unleash the power of collective intelligence and pave the way for artificial general intelligence (AGI). However, current wireless networks are designed as a "data pipe" and are not suited to accommodate and leverage the power of GenAI. In this paper, we propose the GenAINet framework in which distributed GenAI agents communicate knowledge (high-level concepts or abstracts) to accomplish arbitrary tasks. We first provide a network architecture integrating GenAI capabilities to manage both network protocols and applications. Building on this, we investigate effective communication and reasoning problems by proposing a semantic-native GenAINet. Specifically, GenAI agents extract semantic concepts from multi-modal raw data, build a knowledgebase representing their semantic relations, which is retrieved by GenAI models for planning and reasoning. Under this paradigm, an agent can learn fast from other agents' experience for making better decisions with efficient communications. Furthermore, we conduct two case studies where in wireless device query, we show that extracting and transferring knowledge can improve query accuracy with reduced communication; and in wireless power control, we show that distributed agents can improve decisions via collaborative reasoning. Finally, we address that developing a hierarchical semantic level Telecom world model is a key path towards network of collective intelligence.
翻译:暂无翻译