Obtaining reliable estimates of conditional covariance matrices is an important task of heteroskedastic multivariate time series. In portfolio optimization and financial risk management, it is crucial to provide measures of uncertainty and risk as accurately as possible. We propose using mixture vector autoregressive (MVAR) models for portfolio optimization. Combining a mixture of distributions that depend on the recent history of the process, MVAR models can accommodate asymmetry, multimodality, heteroskedasticity and cross-correlation in multivariate time series data. For mixtures of Normal components, we exploit a property of the multivariate Normal distribution to obtain explicit formulas of conditional predictive distributions of returns on a portfolio of assets. After showing how the method works, we perform a comparison with other relevant multivariate time series models on real stock return data.
翻译:获取对有条件共变矩阵的可靠估计是多变性多时间序列的重要任务。 在组合优化和财务风险管理中,必须提供尽可能准确的不确定性和风险衡量标准。我们提议使用混合矢量自动递减模型优化组合组合组合。MVAR模型结合了取决于过程近代史的分布组合,可以容纳不对称、多模式、多变性、多变性、交叉交错时间序列数据。对于正常元件的混合物,我们利用多变性正常分配的产物,以获得资产组合中有条件预测收益分配的明确公式。在展示该方法如何运作后,我们将实际存量回报数据与其他相关的多变时间序列模型进行比较。