In this paper we experiment with using neural network structures to predict a protein's secondary structure ({\alpha} helix positions) from only its primary structure (amino acid sequence). We implement a fully connected neural network (FCNN) and preform three experiments using that FCNN. Firstly, we do a cross-species comparison of models trained and tested on mouse and human datasets. Secondly, we test the impact of varying the length of protein sequence we input into the model. Thirdly, we compare custom error functions designed to focus on the center of the input window. At the end of paper we propose a alternative, recurrent neural network model which can be applied to the problem.
翻译:在这份文件中,我们实验使用神经网络结构从蛋白质的主要结构(氨酸序列)中预测第二结构(硫酸螺旋位置)来预测蛋白质的二次结构。我们实施一个完全连接的神经网络(FCNN),并使用FCNN进行前三次实验。首先,我们对在鼠标和人类数据集中培训和测试的模型进行跨物种比较。第二,我们测试输入模型的蛋白序列长度不同的影响。第三,我们比较定制错误功能,以关注输入窗口的中心。在论文结尾,我们提出了一个可用于解决问题的替代、经常性神经网络模型。