In this paper, we investigate an open research task of generating 3D cartoon face shapes from single 2D GAN generated human faces and without 3D supervision, where we can also manipulate the facial expressions of the 3D shapes. To this end, we discover the semantic meanings of StyleGAN latent space, such that we are able to produce face images of various expressions, poses, and lighting by controlling the latent codes. Specifically, we first finetune the pretrained StyleGAN face model on the cartoon datasets. By feeding the same latent codes to face and cartoon generation models, we aim to realize the translation from 2D human face images to cartoon styled avatars. We then discover semantic directions of the GAN latent space, in an attempt to change the facial expressions while preserving the original identity. As we do not have any 3D annotations for cartoon faces, we manipulate the latent codes to generate images with different poses and lighting, such that we can reconstruct the 3D cartoon face shapes. We validate the efficacy of our method on three cartoon datasets qualitatively and quantitatively.
翻译:在本文中, 我们调查了一个公开的研究任务, 从 2D GAN 生成的人类面孔中生成 3D 的 3D 卡通脸形状, 而没有 3D 监督, 我们也可以在其中操作 3D 形状的面部表达方式。 为此, 我们发现StyleGAN 潜在空间的语义含义, 这样我们就可以通过控制潜伏代码来生成各种表达、 姿势和照明的图像。 具体地说, 我们首先在卡通数据集上微调了经过预先训练的 StyGAN 脸型模型。 通过将相同的潜伏代码输入面部和卡通生成模型, 我们的目标是实现将 2D 人类脸部图像转换为 3D 型动画。 我们随后发现 GAN 潜在空间的语义方向, 试图在保存原始身份的同时改变面貌 。 由于我们没有任何 3D 的漫画 说明, 我们使用隐型代码来生成具有不同面部和光度的图像, 从而可以重建 3D 漫画 脸 形状。 我们验证了我们三个卡通数据集的功效 。