Multi-hop reasoning for question answering (QA) plays a critical role in retrieval-augmented generation (RAG) for modern large language models (LLMs). The accurate answer can be obtained through retrieving relational structure of entities from knowledge graph (KG). Regarding the inherent relation-dependency and reasoning pattern, multi-hop reasoning can be in general classified into two categories: i) parallel fact-verification multi-hop reasoning question, i.e., requiring simultaneous verifications of multiple independent sub-questions; and ii) chained multi-hop reasoning questions, i.e., demanding sequential multi-step inference with intermediate conclusions serving as essential premises for subsequent reasoning. Currently, the multi-hop reasoning approaches singly employ one of two techniques: LLM response-based fact verification and KG path-based chain construction. Nevertheless, the former excels at parallel fact-verification but underperforms on chained reasoning tasks, while the latter demonstrates proficiency in chained multi-hop reasoning but suffers from redundant path retrieval when handling parallel fact-verification reasoning. These limitations deteriorate the efficiency and accuracy for multi-hop QA tasks. To address this challenge, we propose a novel dual-track KG verification and reasoning framework DTKG, which is inspired by the Dual Process Theory in cognitive science. Specifically, DTKG comprises two main stages: the Classification Stage and the Branch Processing Stage.
翻译:暂无翻译