This article explores the extension of well-known F1 score used for assessing the performance of binary classifiers. We propose the new metric using probabilistic interpretation of precision, recall, specificity, and negative predictive value. We describe its properties and compare it to common metrics. Then we demonstrate its behavior in edge cases of the confusion matrix. Finally, the properties of the metric are tested on binary classifier trained on the real dataset.
翻译:本文探讨用于评估二进制分类器性能的众所周知的F1分的延伸。 我们建议采用精确性、回溯性、特性和负预测值的概率解释来制定新的指标。 我们描述其特性并将其与通用指标进行比较。 然后在混乱矩阵的边缘情况中展示其行为。 最后, 该指标的特性由经过实际数据集培训的二进制分类器测试。