The most widely studied explainable AI (XAI) approaches are unsound. This is the case with well-known model-agnostic explanation approaches, and it is also the case with approaches based on saliency maps. One solution is to consider intrinsic interpretability, which does not exhibit the drawback of unsoundness. Unfortunately, intrinsic interpretability can display unwieldy explanation redundancy. Formal explainability represents the alternative to these non-rigorous approaches, with one example being PI-explanations. Unfortunately, PI-explanations also exhibit important drawbacks, the most visible of which is arguably their size. Recently, it has been observed that the (absolute) rigor of PI-explanations can be traded off for a smaller explanation size, by computing the so-called relevant sets. Given some positive {\delta}, a set S of features is {\delta}-relevant if, when the features in S are fixed, the probability of getting the target class exceeds {\delta}. However, even for very simple classifiers, the complexity of computing relevant sets of features is prohibitive, with the decision problem being NPPP-complete for circuit-based classifiers. In contrast with earlier negative results, this paper investigates practical approaches for computing relevant sets for a number of widely used classifiers that include Decision Trees (DTs), Naive Bayes Classifiers (NBCs), and several families of classifiers obtained from propositional languages. Moreover, the paper shows that, in practice, and for these families of classifiers, relevant sets are easy to compute. Furthermore, the experiments confirm that succinct sets of relevant features can be obtained for the families of classifiers considered.
翻译:最广泛研究过的可解释的 AI (XAI) 方法是不正确的。 众所周知的模型不可知的解释方法就是如此, 以显著地图为基础的方法也是如此。 一种解决办法是考虑内在解释性, 这不会显示不健全的弊端。 不幸的是, 内在解释性可以显示不易解释的冗余。 正式解释性代表了这些非硬性方法的替代方法, 一个例子是 PI 解释。 不幸的是, PI 解释也显示出了重要的直流性缺陷, 其中最明显的是其大小。 最近, 人们发现, PI 解释性( 绝对) 的严格性( ) 也可以通过计算所谓的相关数据集来进行更小的解释性交易。 由于某些正数 delta}, 一套S 特征代表着这些非硬性的方法, 如果S 的特征固定下来, 获得目标类的概率超过 Exdeltatata) 。 然而, 即使是简洁的分类, 相关特性的复杂性( ), 相关的直径( ) 的直径( ) 直径) 的直径), 直译者 的直译者 、 的直译者 、 的直译者 的直 的直系 、 的直 的直 的直系 、 的直系 、 、 直译者 的直译者 的直系的直译者 的直系的直系的直系的直系的直系 、 的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直