The expanding cellular automata (XCA) variant of cellular automata is investigated and characterized from a complexity-theoretical standpoint. An XCA is a one-dimensional cellular automaton which can dynamically create new cells between existing ones. The respective polynomial-time complexity class is shown to coincide with ${\le_{tt}^p}(\mathsf{NP})$, that is, the class of decision problems polynomial-time truth-table reducible to problems in $\mathsf{NP}$. An alternative characterization based on a variant of non-deterministic Turing machines is also given. In addition, corollaries on select XCA variants are proven: XCAs with multiple accept and reject states are shown to be polynomial-time equivalent to the original XCA model. Finally, XCAs with alternative acceptance conditions are considered and classified in terms of ${\le_{tt}^p}(\mathsf{NP})$ and the Turing machine polynomial-time class $\mathsf{P}$.
翻译:从复杂的理论角度调查和描述蜂窝自动成形变体(XCA)的细胞自动变体(XCA) 。 XCA是一个单维细胞自动成形器,可以在现有变体之间动态地创建新细胞。 相应的多元时间复杂等级被显示与$@ tt ⁇ p} (\mathsf{NP}) 相仿, 即决定问题类别( 多数值- 时间- 真理- 可复制到$\\ mathsf{NP}) 中的问题。 也给出了基于非非非定时图灵机器变体的替代定性。 此外, 某些 XCA变体的滚动器被证明: 多重接受和拒绝状态的 XCAA 显示为与原 XCA 模式相等的多元时间。 最后, 具有替代接受条件的 XCA 被考虑并分类为$\\\\ t ⁇ } (\mathfs{NP} 和图灵机 多元时间类 $\\mathfsf{P} 。