We establish a second anti-blocker theorem for non-commutative convex corners, show that the anti-blocking operation is continuous on bounded sets of convex corners, and define optimisation parameters for a given convex corner that generalise well-known graph theoretic quantities. We define the entropy of a state with respect to a convex corner, characterise its maximum value in terms of a generalised fractional chromatic number and establish entropy splitting results that demonstrate the entropic complementarity between a convex corner and its anti-blocker. We identify two extremal tensor products of convex corners and examine the behaviour of the introduced parameters with respect to tensoring. Specialising to non-commutative graphs, we obtain quantum versions of the fractional chromatic number and the clique covering number, as well as a notion of non-commutative graph entropy of a state, which we show to be continuous with respect to the state and the graph. We define the Witsenhausen rate of a non-commutative graph and compute the values of our parameters in some specific cases.


翻译:我们为非混合锥形角设置了第二个抗阻塞理论, 显示反阻塞操作在捆绑的锥形角上是连续不断的, 并定义了特定锥形角的优化参数, 该角一般化了众所周知的图形理论性数量。 我们定义了对锥形角的状态的倍数, 以一般化的分数表示其最大值, 并建立了显示锥形角与其反阻塞器之间正交融的酶分解结果。 我们确定了两个锥形角的极端发声器产品, 并检查了所引入参数在拉声方面的行为。 特别针对非混合图形, 我们获得了分数数和圆形覆盖数的量性版本, 以及一个状态非混合式图形化的图解概念, 我们显示在状态和图形方面可以持续。 我们定义了某种非组合图形和具体参数的维特森使用率。 我们定义了某种非组合式图形和配置参数的某种参数。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
139+阅读 · 2020年5月19日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员