We establish a second anti-blocker theorem for non-commutative convex corners, show that the anti-blocking operation is continuous on bounded sets of convex corners, and define optimisation parameters for a given convex corner that generalise well-known graph theoretic quantities. We define the entropy of a state with respect to a convex corner, characterise its maximum value in terms of a generalised fractional chromatic number and establish entropy splitting results that demonstrate the entropic complementarity between a convex corner and its anti-blocker. We identify two extremal tensor products of convex corners and examine the behaviour of the introduced parameters with respect to tensoring. Specialising to non-commutative graphs, we obtain quantum versions of the fractional chromatic number and the clique covering number, as well as a notion of non-commutative graph entropy of a state, which we show to be continuous with respect to the state and the graph. We define the Witsenhausen rate of a non-commutative graph and compute the values of our parameters in some specific cases.
翻译:我们为非混合锥形角设置了第二个抗阻塞理论, 显示反阻塞操作在捆绑的锥形角上是连续不断的, 并定义了特定锥形角的优化参数, 该角一般化了众所周知的图形理论性数量。 我们定义了对锥形角的状态的倍数, 以一般化的分数表示其最大值, 并建立了显示锥形角与其反阻塞器之间正交融的酶分解结果。 我们确定了两个锥形角的极端发声器产品, 并检查了所引入参数在拉声方面的行为。 特别针对非混合图形, 我们获得了分数数和圆形覆盖数的量性版本, 以及一个状态非混合式图形化的图解概念, 我们显示在状态和图形方面可以持续。 我们定义了某种非组合图形和具体参数的维特森使用率。 我们定义了某种非组合式图形和配置参数的某种参数。