We consider an uncertain linear inverse problem as follows. Given observation $\omega=Ax_*+\zeta$ where $A\in {\bf R}^{m\times p}$ and $\zeta\in {\bf R}^{m}$ is observation noise, we want to recover unknown signal $x_*$, known to belong to a convex set ${\cal X}\subset{\bf R}^{n}$. As opposed to the "standard" setting of such problem, we suppose that the model noise $\zeta$ is "corrupted" -- contains an uncertain (deterministic dense or singular) component. Specifically, we assume that $\zeta$ decomposes into $\zeta=N\nu_*+\xi$ where $\xi$ is the random noise and $N\nu_*$ is the "adversarial contamination" with known $\cal N\subset {\bf R}^n$ such that $\nu_*\in \cal N$ and $N\in {\bf R}^{m\times n}$. We consider two "uncertainty setups" in which $\cal N$ is either a convex bounded set or is the set of sparse vectors (with at most $s$ nonvanishing entries). We analyse the performance of "uncertainty-immunized" polyhedral estimates -- a particular class of nonlinear estimates as introduced in [15, 16] -- and show how "presumably good" estimates of the sort may be constructed in the situation where the signal set is an ellitope (essentially, a symmetric convex set delimited by quadratic surfaces) by means of efficient convex optimization routines.
翻译:暂无翻译