Embodied agents in continuous control domains have had limited exposure to tasks allowing to explore musculoskeletal properties that enable agile and nimble behaviors in biological beings. The sophistication behind neuro-musculoskeletal control can pose new challenges for the motor learning community. At the same time, agents solving complex neural control problems allow impact in fields such as neuro-rehabilitation, as well as collaborative-robotics. Human biomechanics underlies complex multi-joint-multi-actuator musculoskeletal systems. The sensory-motor system relies on a range of sensory-contact rich and proprioceptive inputs that define and condition muscle actuation required to exhibit intelligent behaviors in the physical world. Current frameworks for musculoskeletal control do not support physiological sophistication of the musculoskeletal systems along with physical world interaction capabilities. In addition, they are neither embedded in complex and skillful motor tasks nor are computationally effective and scalable to study large-scale learning paradigms. Here, we present MyoSuite -- a suite of physiologically accurate biomechanical models of elbow, wrist, and hand, with physical contact capabilities, which allow learning of complex and skillful contact-rich real-world tasks. We provide diverse motor-control challenges: from simple postural control to skilled hand-object interactions such as turning a key, twirling a pen, rotating two balls in one hand, etc. By supporting physiological alterations in musculoskeletal geometry (tendon transfer), assistive devices (exoskeleton assistance), and muscle contraction dynamics (muscle fatigue, sarcopenia), we present real-life tasks with temporal changes, thereby exposing realistic non-stationary conditions in our tasks which most continuous control benchmarks lack.
翻译:连续控制领域的内嵌剂暴露于能够探索肌肉骨骼特性的任务范围有限,这些特性可以使生物体具有敏捷和敏捷的行为。神经肌肉骨骼控制背后的精密性能可能会给运动学习界带来新的挑战。与此同时,解决复杂的神经神经控制问题的物剂无法在神经康复和协作机器人等领域产生影响。人类生物机能是复杂的多联合-多活体肌肉骨骼系统的基础。感官机能系统依靠一系列感官-触觉-触觉性丰富和感官性能的输入来定义和状态肌肉振动,以展示物理界的智能行为。目前肌肉骨骼控制框架不能支持肌肉骨骼系统以及物理世界互动能力等领域的生理复杂性。此外,人类生物机能系统既不能嵌入复杂和熟练的马达任务,也无法与大规模学习的模型进行有效和可伸缩性的研究。在这里,我们展示了Myoutrial-感官骨骼的不触动性能和运动动力动力动力动力动力变化, 支持了生理-生理物理转动的生理-生理、生理运动的生理运动、手动控制、手动、手动控制、手动、手动、手动控制、手动、手动、手动、手动、手动、手动、手动的手动控制、手动控制等等能力、手动、手动、手动、手动、手动、手动、手动、手动的手动、手动控制等的手动控制能力、手动、手动、手动控制能力、手动控制、手动、手动、手动、手动控制、手动、手动、手动、手力、手、手动的手动、手动控制、手动、手力、手动、手动、手动、手动、手动、手动、手动、手动、手动、手动、手、手、手力、手力、手、手、手、手、手、手、手、手、手、手、手、手、手力、手力、手力、手、手、手、手力控制、手力、手力、手力、手、手力控制、手力控制、手術、手術、手術、手力、手力、手力、手術、手力